If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7y2 + 15y + 7 = 0 Reorder the terms: 7 + 15y + 7y2 = 0 Solving 7 + 15y + 7y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 1 + 2.142857143y + y2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.142857143y + -1 + y2 = 0 + -1 Reorder the terms: 1 + -1 + 2.142857143y + y2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.142857143y + y2 = 0 + -1 2.142857143y + y2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.142857143y + y2 = -1 The y term is 2.142857143y. Take half its coefficient (1.071428572). Square it (1.147959185) and add it to both sides. Add '1.147959185' to each side of the equation. 2.142857143y + 1.147959185 + y2 = -1 + 1.147959185 Reorder the terms: 1.147959185 + 2.142857143y + y2 = -1 + 1.147959185 Combine like terms: -1 + 1.147959185 = 0.147959185 1.147959185 + 2.142857143y + y2 = 0.147959185 Factor a perfect square on the left side: (y + 1.071428572)(y + 1.071428572) = 0.147959185 Calculate the square root of the right side: 0.384654631 Break this problem into two subproblems by setting (y + 1.071428572) equal to 0.384654631 and -0.384654631.Subproblem 1
y + 1.071428572 = 0.384654631 Simplifying y + 1.071428572 = 0.384654631 Reorder the terms: 1.071428572 + y = 0.384654631 Solving 1.071428572 + y = 0.384654631 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.071428572' to each side of the equation. 1.071428572 + -1.071428572 + y = 0.384654631 + -1.071428572 Combine like terms: 1.071428572 + -1.071428572 = 0.000000000 0.000000000 + y = 0.384654631 + -1.071428572 y = 0.384654631 + -1.071428572 Combine like terms: 0.384654631 + -1.071428572 = -0.686773941 y = -0.686773941 Simplifying y = -0.686773941Subproblem 2
y + 1.071428572 = -0.384654631 Simplifying y + 1.071428572 = -0.384654631 Reorder the terms: 1.071428572 + y = -0.384654631 Solving 1.071428572 + y = -0.384654631 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.071428572' to each side of the equation. 1.071428572 + -1.071428572 + y = -0.384654631 + -1.071428572 Combine like terms: 1.071428572 + -1.071428572 = 0.000000000 0.000000000 + y = -0.384654631 + -1.071428572 y = -0.384654631 + -1.071428572 Combine like terms: -0.384654631 + -1.071428572 = -1.456083203 y = -1.456083203 Simplifying y = -1.456083203Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.686773941, -1.456083203}
| 3(12x-25)=5-1(x+7) | | 9(m+8)= | | (1/x-5)+(1/x+5)=(2x+1)/(x^2-25) | | (3x+7/9)(3x-1/3) | | -6/7x=2.125 | | -8u-8=-5(u-2) | | 12x+13x-5x=-9x-25+x | | 10=6(1x-5)+2x | | 6y-3(y-1)+6= | | 2x-40+2.4x=360 | | -8(v+1)=-5v+16 | | 2x^2-3x=125 | | 21=-x/7 | | 6(-4-6n)=-240 | | 7b-(3a-8b)=0 | | 19-5a=-7-3(-2-5a) | | 3(2x-1)=4(x+5)-11 | | 13b+29=18b+19 | | 1/9x=12 | | 7/4-7/12x=4/3 | | 2x+18=-4(x-9) | | 18-w=-3(2w-1) | | (1/x-3)-(2/x+3)=1/(x-3)(x+3) | | 1/6(3x+2) | | 0.5x-x=0 | | 8x-60=4 | | g-0.22g-0.02g=881.6 | | -3(u-7)=4u-49 | | 3x+32-4x=1-8+3 | | 2x-(10+6)=5x-20 | | 7/4-11/12x=7/3 | | x-40=17 |